f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ftc

NAG C Library Function Document

nag_zungtr (f08ftc)

1 Purpose

nag_zungtr (fO8ftc) generates the complex unitary matrix ¢, which was determined by nag_zhetrd (f08fsc)
when reducing a Hermitian matrix to tridiagonal form.

2 Specification

void nag_zungtr (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zungtr (fO8ftc) is intended to be used after a call to nag_ zhetrd (f08fsc), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form 7 by a unitary similarity transformation:

A=QTQ". nag zhetrd (f08fsc) represents the unitary matrix () as a product of n — 1 elementary
reflectors.

This function may be used to generate () explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_ RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

2: uplo — Nag_UploType Input
On entry: this must be the same parameter uplo as supplied to nag_zhetrd (f08fsc).
Constraint: uplo = Nag_Upper or Nag_Lower.

3: n — Integer Input
On entry: n, the order of the matrix Q).

Constraint: n > 0.

4: a[dim| — Complex Input/Output
Note: the dimension, dim, of the array a must be at least max(1, pda x n).

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, 7)th element of the matrix A is stored in a[(i — 1) x pda + j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag zhetrd
(f08fsc).

On exit: the n by n unitary matrix Q.

[NP3645/7] 108fic. 1

f08ftc

6

NAG C Library Manual

pda — Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda > max(1,n).

tau[dim]| — const Complex Input
Note: the dimension, dim, of the array tau must be at least max(1,n — 1).

On entry: further details of the elementary reflectors, as returned by nag zhetrd (f08fsc).

fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, n = (value).
Constraint: n > 0.

On entry, pda = (value).
Constraint: pda > 0.

NE_INT 2

On entry, pda = (value), n = {value).
Constraint: pda > max(1,n).

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

7

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

Accuracy

The computed matrix @) differs from an exactly unitary matrix by a matrix F such that

1E]l, = O(e),

where € is the machine precision.

8

The total number of real floating-point operations is approximately

Further Comments

16

3
TTL.

The real analogue of this function is nag_dorgtr (fO8ffc).

f08fic.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

f08ftc

—0.12 4+ 2.534%
—1.07 + 0.8617
2.31 —0.92¢

9 Example
To compute all the eigenvalues and eigenvectors of the matrix A, where
—2.28 4 0.007 1.78 —2.03¢ 2.26 +0.10¢
e 1.78 +2.03¢ —1.12+0.00¢ 0.01 +0.434
a 226 —-0.100 0.01 —0.43¢ —0.37 +0.00¢
—0.12—-2.53¢ —1.07—0.86i 2.31+0.92¢

—0.73 4+ 0.00¢

Here A is Hermitian and must first be reduced to tridiagonal form by nag zhetrd (f08fsc). The program
then calls nag_zungtr (f08ftc) to form (), and passes this matrix to nag_zsteqr (f08jsc) which computes the

eigenvalues and eigenvectors of A.

9.1 Program Text

/* nag_zungtr (f08ftc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*

* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{
/* Scalars *x/
Integer i, j, n, pda, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */

char uplo_char([2];
Complex *a=0, *tau=0, *z=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)=*pda

#define 7Z(I,J) z[(J-1)*pdz + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)=*pda

#define 72(I,J) z[(I-1)*pdz + J - 1]
order = Nag_RowMajor;

#endif

+

H
1

e

+

(&
1

=

INIT _FAIL(fail);
Vprintf ("f08ftc Example Program Results\n");

/* Skip heading in data file */

Vscanf ("s*["\n] ");

Vscanf ("$1d%*[*\n] ", &n);
#ifdef NAG_COLUMN_MAJOR

pda = n;

pdz = n;
#else

pda = n;

pdz = n;
#endif

tau_len = n-1;

d_len = n;

e_len = n-1;

/* Allocate memory */

[NP3645/7]

f08ftc.3

fO8ftc

if (= NAG_ALLOC(n * n, Complex))

NAG_ALLOC(n * n, Complex))
= NAG_ALLOC(d_1len, double)) |
NAG_ALLOC(e_len, double)))

I (a
1 (t
1 (z
1(d
1 (e

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */

Vscanf (" ' %1s ’'%*["\n] ", uplo_char);

if (*(unsigned char #*)uplo_char == 'L’)
uplo = Nag_Lower;

else if (#*(unsigned char #*)uplo_char ==
uplo = Nag_Upper;

NAG C Library Manual

[

au = NAG_ALLOC(tau_len, Complex)) ||
[
|

'u’)

Nag_UploType type\n");

j).re, &A(i,3).im);

else
{
Vprintf ("Unrecognised character for
exit_status = -1;
goto END;
}
if (uplo == Nag_Upper)
{
for (1 = 1; 1 <= n; ++1)
{
for (j = 1i; j <= n; ++j)
Vscanf (" (%1f , %1f)", &A(1i,
b
Vscanf ("s*[*\n] ");
}
else
{
for (i = 1; i <= n; ++1)
{
for (3 = 1; j <= 1i; ++3)
Vscanf (" (%1f , %1f)", &A(i,j).re, &A(i,]).im);
}
Vscanf ("s*[*\n] ");
}

/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
f08fsc(order, uplo, n, a, pda, 4, e, tau, &fail);

if (fail.code != NE_NOERROR)

{
Vprintf ("Error from f08fsc.\n%s\n",

exit_status = 1;
goto END;
}

/* Copy A into Z */
if (uplo == Nag_Upper)

for (1 = 1; 1 <= n; ++1)

for (j = 1i; j <= n; ++3j)

else
for (i = 1; i <= n; ++1i)
for (3 = 1; j <= 1i; ++3)

Z(i,j).xre = A(i,]).re;

(i,3).im;

>

f08ftc.4

fail.message) ;

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08ftc

b
}
/* Form Q explicitly, storing the result in Z */
f08ftc(order, uplo, n, z, pdz, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ftc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate all the eigenvalues and eigenvectors of A x/
f08jsc(order, Nag _Updatez, n, 4, e, z, pdz, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from £08jsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors =*/
Vprintf ("\nEigenvalues\n");
for (i = 1; i <= n; ++i)
Vprintf ("%9.4f%s", d[i-1], i%4==0 2"\n":" ");
Vprintf ("\n");
x04dbc (order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,
z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, O, Nag_IntegerLabels, 0, 80, O,

0, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE (tau);
if (z) NAG_FREE(z);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);

return exit_status;

9.2 Program Data

f08ftc Example Program Data

4 :Value of N

'L’ :Value of UPLO
(-2.28, 0.00)

(1.78, 2.03) (-1.12, 0.00)

(2.26,-0.10) (0.01,-0.43) (-0.37, 0.00)

(-0.12,-2.53) (-1.07,-0.86) (2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08ftc Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors

1 2 3 4

1 (0.7299, 0.0000) (-0.2120, 0.1497) (0.1000,-0.3570) (0.1991, 0.4720)
2 (-0.1663,-0.2061) (0.7307, 0.0000) (0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) (0.6890, 0.0000) (0.4468, 0.1466)
4 (0.1743, 0.4162) (0.5200, 0.1329) (0.0662, 0.4347) (0.5612, 0.0000)

[NP3645/7] 108fic.5 (last)

	f08ftc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

