
NAG C Library Function Document

nag_zungtr (f08ftc)

1 Purpose

nag_zungtr (f08ftc) generates the complex unitary matrix Q, which was determined by nag_zhetrd (f08fsc)
when reducing a Hermitian matrix to tridiagonal form.

2 Specification

void nag_zungtr (Nag_OrderType order, Nag_UploType uplo, Integer n, Complex a[],
Integer pda, const Complex tau[], NagError *fail)

3 Description

nag_zungtr (f08ftc) is intended to be used after a call to nag_zhetrd (f08fsc), which reduces a complex
Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation:

A ¼ QTQH . nag_zhetrd (f08fsc) represents the unitary matrix Q as a product of n� 1 elementary
reflectors.

This function may be used to generate Q explicitly as a square matrix.

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: uplo – Nag_UploType Input

On entry: this must be the same parameter uplo as supplied to nag_zhetrd (f08fsc).

Constraint: uplo ¼ Nag Upper or Nag Lower.

3: n – Integer Input

On entry: n, the order of the matrix Q.

Constraint: n � 0.

4: a½dim� – Complex Input/Output

Note: the dimension, dim, of the array a must be at least maxð1;pda� nÞ.
If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_zhetrd
(f08fsc).

On exit: the n by n unitary matrix Q.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ftc

[NP3645/7] f08ftc.1

5: pda – Integer Input

On entry: the stride separating row or column elements (depending on the value of order) of the
matrix A in the array a.

Constraint: pda � maxð1; nÞ.

6: tau½dim� – const Complex Input

Note: the dimension, dim, of the array tau must be at least maxð1; n� 1Þ.
On entry: further details of the elementary reflectors, as returned by nag_zhetrd (f08fsc).

7: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, n = hvaluei.
Constraint: n � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

NE_INT_2

On entry, pda ¼ hvaluei, n ¼ hvaluei.
Constraint: pda � maxð1; nÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed matrix Q differs from an exactly unitary matrix by a matrix E such that

kEk2 ¼ Oð�Þ;

where � is the machine precision.

8 Further Comments

The total number of real floating-point operations is approximately 16
3
n3.

The real analogue of this function is nag_dorgtr (f08ffc).

f08ftc NAG C Library Manual

f08ftc.2 [NP3645/7]

9 Example

To compute all the eigenvalues and eigenvectors of the matrix A, where

A ¼

�2:28þ 0:00i 1:78� 2:03i 2:26þ 0:10i �0:12þ 2:53i
1:78þ 2:03i �1:12þ 0:00i 0:01þ 0:43i �1:07þ 0:86i
2:26� 0:10i 0:01� 0:43i �0:37þ 0:00i 2:31� 0:92i

�0:12� 2:53i �1:07� 0:86i 2:31þ 0:92i �0:73þ 0:00i

1
CCA

0
BB@ :

Here A is Hermitian and must first be reduced to tridiagonal form by nag_zhetrd (f08fsc). The program
then calls nag_zungtr (f08ftc) to form Q, and passes this matrix to nag_zsteqr (f08jsc) which computes the
eigenvalues and eigenvectors of A.

9.1 Program Text

/* nag_zungtr (f08ftc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, j, n, pda, pdz, d_len, e_len, tau_len;
Integer exit_status=0;
NagError fail;
Nag_UploType uplo;
Nag_OrderType order;
/* Arrays */
char uplo_char[2];
Complex *a=0, *tau=0, *z=0;
double *d=0, *e=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define Z(I,J) z[(J-1)*pdz + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define Z(I,J) z[(I-1)*pdz + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08ftc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
Vscanf("%ld%*[^\n] ", &n);

#ifdef NAG_COLUMN_MAJOR
pda = n;
pdz = n;

#else
pda = n;
pdz = n;

#endif

tau_len = n-1;
d_len = n;
e_len = n-1;
/* Allocate memory */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ftc

[NP3645/7] f08ftc.3

if (!(a = NAG_ALLOC(n * n, Complex)) ||
!(tau = NAG_ALLOC(tau_len, Complex)) ||
!(z = NAG_ALLOC(n * n, Complex)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}

/* Read A from data file */
Vscanf(" ’ %1s ’%*[^\n] ", uplo_char);
if (*(unsigned char *)uplo_char == ’L’)

uplo = Nag_Lower;
else if (*(unsigned char *)uplo_char == ’U’)

uplo = Nag_Upper;
else

{
Vprintf("Unrecognised character for Nag_UploType type\n");
exit_status = -1;
goto END;

}
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);
}

Vscanf("%*[^\n] ");
}

else
{

for (i = 1; i <= n; ++i)
{

for (j = 1; j <= i; ++j)
Vscanf(" (%lf , %lf)", &A(i,j).re, &A(i,j).im);

}
Vscanf("%*[^\n] ");

}

/* Reduce A to tridiagonal form T = (Q**H)*A*Q */
f08fsc(order, uplo, n, a, pda, d, e, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08fsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Copy A into Z */
if (uplo == Nag_Upper)

{
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

{
Z(i,j).re = A(i,j).re;
Z(i,j).im = A(i,j).im;

}
}

}
else

{
for (i = 1; i <= n; ++i)

{
for (j = 1; j <= i; ++j)

{
Z(i,j).re = A(i,j).re;
Z(i,j).im = A(i,j).im;

f08ftc NAG C Library Manual

f08ftc.4 [NP3645/7]

}
}

}
/* Form Q explicitly, storing the result in Z */
f08ftc(order, uplo, n, z, pdz, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ftc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}

/* Calculate all the eigenvalues and eigenvectors of A */
f08jsc(order, Nag_UpdateZ, n, d, e, z, pdz, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08jsc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Print eigenvalues and eigenvectors */
Vprintf("\nEigenvalues\n");
for (i = 1; i <= n; ++i)

Vprintf("%9.4f%s", d[i-1], i%4==0 ?"\n":" ");
Vprintf("\n");
x04dbc(order, Nag_GeneralMatrix, Nag_NonUnitDiag, n, n,

z, pdz, Nag_BracketForm, "%7.4f", "Eigenvectors",
Nag_IntegerLabels, 0, Nag_IntegerLabels, 0, 80, 0,
0, &fail);

if (fail.code != NE_NOERROR)
{

Vprintf("Error from x04dbc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
END:
if (a) NAG_FREE(a);
if (tau) NAG_FREE(tau);
if (z) NAG_FREE(z);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);

return exit_status;
}

9.2 Program Data

f08ftc Example Program Data
4 :Value of N
’L’ :Value of UPLO

(-2.28, 0.00)
(1.78, 2.03) (-1.12, 0.00)
(2.26,-0.10) (0.01,-0.43) (-0.37, 0.00)
(-0.12,-2.53) (-1.07,-0.86) (2.31, 0.92) (-0.73, 0.00) :End of matrix A

9.3 Program Results

f08ftc Example Program Results

Eigenvalues
-6.0002 -3.0030 0.5036 3.9996

Eigenvectors
1 2 3 4

1 (0.7299, 0.0000) (-0.2120, 0.1497) (0.1000,-0.3570) (0.1991, 0.4720)
2 (-0.1663,-0.2061) (0.7307, 0.0000) (0.2863,-0.3353) (-0.2467, 0.3751)
3 (-0.4165,-0.1417) (-0.3291, 0.0479) (0.6890, 0.0000) (0.4468, 0.1466)
4 (0.1743, 0.4162) (0.5200, 0.1329) (0.0662, 0.4347) (0.5612, 0.0000)

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08ftc

[NP3645/7] f08ftc.5 (last)

	f08ftc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	uplo
	n
	a
	pda
	tau
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

